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Abstract. We present a theoretical formalism for calculating the anisotropy and polarization of
photon emission due to a spiralling beam of electrons colliding with an ensemble of atoms or ions.
For an axisymmetric beam with a given velocity angular distribution, the polarization and angular
distribution of the resulting radiation can be characterized by the expansion coefficients of the
distribution function in terms of Legendre polynomials. We present simple expressions for dipole
and quadrupole radiation and apply the results to the case of an electron beam ion trap.

1. Introduction

Ions excited by collisions with a directioned beam of electrons may emit polarized light [1,2].
This fact has recently received increasing attention because of its diagnostic potential for
ascertaining the existence of directional electrons in laboratory and astrophysical plasmas [3,4].
Suggestions have been made to use polarized x-ray line emission to study, for example,
beam–plasma interactions in solar flares [5–9], the properties of tokamak plasmas [10], and
the production of fast directional electrons in laser–matter interactions [11, 12]. Efforts
are underway using electron beam ion traps (EBITs) to test the underlying atomic physics
responsible for the observed polarization [13–18]. These sources use a mono-energetic electron
beam to excite trapped ions, which are essentially at rest.

EBITs appear to represent ideal sources for studying the physics of ion alignment and
polarized line emission. The electron flow in the beam, however, is not truly unidirectional
and laminar, as the beam electrons are produced at the electron gun with a non-vanishing
thermal component. The component perpendicular to the magnetic field direction causes the
electrons to gyrate. Thus, instead of following the magnetic field lines along the beam direction,
the beam electrons follow a helical path. The amount of energy in the direction perpendicular
to the beam direction,E⊥, is thought to be small [14–16], but may be a significant fraction
of the total energy if the EBIT source is run at a low beam energy. Electron spiralling, thus,
has a systematic effect on the polarization and anisotropy of radiation emitted from EBIT light
sources, which must be estimated in the measurements [14–16].

The effects of electron spiralling on beam-induced line emission and polarization has
been treated theoretically by Haug [6]. His work, however, is valid only for electric dipole
transitions. Here we present a theoretical framework for estimating the effects of electron
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Figure 1. The relationship between the laboratory frame
S and the photon frameSγ . The projection of thezγ -
axis onto thexy-plane is shown by the dashed lines. The
xγ -axis lies in thexy-plane.

spiralling which is valid for all multipole transitions. Although including different multipole
operators for a transition presents no difficulty, we will concentrate on the case where the
transition can be accurately represented as being due to a single multipole operator. This is
a good approximation for atomic transitions so long as(αZeff)

2 � 1, whereα is the fine-
structure constant andZeff is the effective nuclear charge of the ion [19]. Our work is based
on the formalism given by Steffen and Alder [20]. The results are directly applicable to the
polarization of line emission from EBIT sources. We find that simple analytical expressions
can be derived to quantify the spiralling effects on the emitted radiation. These expressions
can be used to assess and correct for systematic effects on line intensity and polarization
measurements from such radiation sources.

2. Theory

We are interested in collision processes which form an excited ion of initial total angular
momentumJi which then radiatively decays to a final state of total angular momentumJf .
Our analysis follows the prescription of Steffen and Alder [20].

We begin by defining three reference frames: the laboratory frame, the photon frame, and
the electron frame. The relationship between the three is shown in figures 1 and 2. In the
laboratory frameS,B defines the +z-axis. In this frame, the directions of the emitted photon
k and of the electron velocityve are given, respectively, by their polar angles2 andθ , and
azimuthal angles8 andφ. The +z-axes of the photon frameSγ and the electron frameSe are
determined byk andve, respectively. The +x-axis ofSγ is defined byB×k. To bringS toSγ ,
a rotationR(8,2, π/2) is performed, whereR(α, β, γ ) is the rotation operator expressed in
Euler angles [21,22]. We define the +x-axis ofSe by ve ×B. A rotationR(−π/2, θ, π − φ)
bringsSe to S.

For radiative decaysi → f , the probability of detecting a photon emitted in thek direction
using a detector with an efficiency matrixε is given by [20]

W(k, ε) =
∑
τ,τ ′
〈τ |ρ0

0(Jf )|τ ′〉〈τ ′|ε|τ 〉(2Jf + 1)1/2 (1)
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Figure 2. The relationship between the laboratory
frameS and the electron frameSe. The projection of
the ze-axis onto thexy-plane is shown by the dashed
lines. Thexe-axis lies in thexy-plane.

where〈τ |ρ0
0(Jf )|τ ′〉 is the reduced matrix operator in theS frame for a single photon process,

ρ0
0(Jf ) is a 2× 2 matrix, andτ andτ ′ label photon helicity states. A label ofτ or τ ′ = +1
(−1) corresponds to left (right) circularly polarized light [21]. Re-expressing〈τ |ρ0

0(Jf )|τ ′〉
in terms of the statistical tensor before photon emission,ρλq (Ji), gives

〈τ |ρ0
0(Jf )|τ ′〉 =

d�

8π

∑
LL′λq

(
L L′ λ

τ −τ ′ µ

)
(
L L′ λ

1 −1 0

) (
2Ji + 1

2Jf + 1

)1/2

ρλq (Ji)

×[γ (EL) + τγ (ML)][γ ∗(EL′) + τ ′γ ∗(ML′)]

×Fλ(LL′Jf Ji)D(λ)∗
qµ (S → Sγ )

/∑
Lπ

|γ (πL)|2. (2)

Here d� is the solid angle element;L is the order of the 2L multipole decay; the quantities
in the large parenthesis denote Wigner 3-j symbols; andγ (πL) is the multipole transition
amplitude withπ = E (M) for electric (magnetic) transitions.Fλ(LL′Jf Ji) is given by

Fλ(LL
′Jf Ji) = (−1)Jf +Ji−1[(2λ + 1)(2L + 1)(2L′ + 1)(2Ji + 1)]1/2

×
(
L L′ λ

1 −1 0

){
L L′ λ

Ji Ji Jf

}
, (3)

where the quantity in the large braces denotes a Wigner 6-j symbol. The properties and values
of the 3-j and 6-j symbols are given by Cowan [23].D(λ)∗

qµ (S → Sγ ) = D(λ)∗
qµ (8,2, π/2) is

the rotation matrix fromS to Sγ . The rotation matrices are described in detail in [21,22].
Using the fact that parity is a good quantum number for atomic states, for a single multipole

transition equation (2) simplifies to

〈τ |ρ0
0(Jf )|τ 〉 =

d�

8π

(
2Ji + 1

2Jf + 1

)1/2∑
λq

τ λρλq (Ji)AλD
(λ)∗
q0 (S → Sγ ) (4)

〈τ |ρ0
0(Jf )|−τ 〉 =

d�

8π

(
2Ji + 1

2Jf + 1

)1/2∑
λq

τ λρλq (Ji)Aλ,2D
(λ)∗
q∓2(S → Sγ ), (5)
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whereD(λ)∗
q−2(D

(λ)∗
q+2 ) corresponds toτ = +1(−1). Aλ = Fλ(LLJf Ji) and

Aλ,2 = (−1)3(π)

(
L L λ

1 1 −2

)
(
L L λ

1 −1 0

)Aλ, (6)

where3(E) = 0 and3(M)=1. Aλ andAλ,2 are called the angular distribution coefficients.
EBIT measurements commonly use detectors which are sensitive to linearly polarized

radiation. For these detectors, the efficiency matrix in the representation of helicity states is
given by [20] ( 〈+1|ε|+1〉 〈+1|ε|−1〉

〈−1|ε|+1〉 〈−1|ε|−1〉
)
= 1

2

(
1 −Qe−i2α

−Qei2α 1

)
, (7)

whereQ is called the linear polarization efficiency. The detector efficiencies for radiation
polarized along two orthogonal axes,p ands, are given byEp = (1+Q)/2 andEs = (1−Q)/2,
respectively.α is the angle between thep-axis and thexγ -axis. In the above definition, the
efficiency matrix is normalized so that the detector response to unpolarized radiation is1

2, i.e.,
Ep + Es = 1. For arbitraryEp andEs , the efficiency matrix may be written as

1

2

(
Es + Ep (Es − Ep)e−i2α

(Es − Ep)ei2α Es + Ep

)
. (8)

The resulting angular distribution detection factor is then

W(8,2, α, Ep, Es) = d�

16π

∑
λq

(2Ji + 1)1/2ρλq (Ji)

×
{
(Ep + Es)(Aλ + (−1)λAλ)

(
4π

2λ + 1

)1/2

Y ∗λq(2,8)

−(Ep − Es)[Aλ,2D(λ)∗
q−2(8,2, π/2 +α)

+(−1)λAλ,2D
(λ)∗
q2 (8,2, π/2 +α)]

}
. (9)

Here we have used [22]

D
(λ)∗
q0 (8,2, π/2) =

(
4π

2λ + 1

)1/2

Y ∗λq(2,8), (10)

whereYλq is the spherical harmonic and

D
(λ)∗
q±2(8,2, π/2 +α) = D(λ)∗

q±2(8,2, π/2)e
±i2α. (11)

The radiating system is formed by an electron colliding with a quasistationary ion. In the
Se frame, the system is axisymmetric alongve and the initial statistical tensorρ ′λq is nonzero
only for q = 0 [20]. The statistical tensors inS andSe are related by the rotation

ρλq (Ji, θ, φ) =
∑
q ′
ρ ′λq ′ (Ji)D

(λ)∗
q ′q (−π/2, θ, π − φ)

= ρ ′λ0 (Ji)D(λ)∗
0q (−π/2, θ, π − φ), (12)

where

ρ ′λ0 (Ji) =
∑
m

(−1)Ji+m(2λ + 1)1/2
(
Ji Ji λ

−m m 0

)
σm. (13)
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The factorσm represents the population density of the magnetic sublevelm. Them values are
quantized alongve. The density matrixρ ′ is normalized so that Trρ ′ = ∑

m σm = 1. It is
convenient to introduce the orientation parameters which are defined as

Bλ(Ji) = (2Ji + 1)1/2ρ ′λ0 (Ji). (14)

The electrons in an EBIT can be described by a pitch angle distributionf (cosθ), which
we normalize so that

∫ 1
−1 d(cosθ) f (cosθ) = 1. In the Lawrence Livermore EBIT and

SuperEBIT [24–26], the electrons travel along the∼3 T magnetic field lines in the trapping
volume, spiralling with a cyclotron frequency of∼5.3× 1011 revolutions s−1. For kinetic
energies.100 keV, the electrons undergo&25 revolutions as they traverse the observed central
1 cm length of the trap. This large number of revolutions allows us to calculate the initial
statistical tensor of the radiating system by averaging equation (12) overθ andφ. This gives

ρλq (Ji) =
∫ 1

−1
d(cosθ) f (cosθ)

∫ 2π

0

dφ

2π
ρλq (Ji, θ, φ)

= ρ ′λ0 (Ji)
∫ 1

−1
d(cosθ) f (cosθ)

∫ 2π

0

dφ

2π
D
(λ)∗
0q (−π/2, θ, π − φ)

= δq0gλρ
′λ
q (Ji), (15)

where

gλ =
∫ 1

−1
d(cosθ) f (cosθ)Pλ(cosθ), (16)

andPλ(cosθ) is the Legendre polynomial. Using equations (9), (14) and (15) yields the angular
distribution factor for radiation produced by a spiralling beam of electrons,

W(8,2, α, Ep, Es) = d�

16π

∑
λ

gλBλ{(Ep + Es)(Aλ + (−1)λAλ)Pλ(cos2)− (Ep − Es)

×[Aλ,2D
(λ)∗
0−2(8,2, π/2 +α) + (−1)λAλ,2D

(λ)∗
02 (8,2, π/2 +α)]}. (17)

Here we have used(
4π

2λ + 1

)1/2

Y ∗λ0(2,8) = Pλ(cos2). (18)

The rotation matrix elementsD(λ)∗
0±2 can be expressed as [22,27]

D
(λ)∗
0±2(8,2, π/2 +α) = −

(
(λ− 2)!

(λ + 2)!

)1/2

P
(2)
λ (cos2)e∓i2α (19)

whereP (2)λ (cos2) is the associated Legendre polynomial. Using equations (17) and (19) gives

W(2, α, Ep, Es) = d�

8π

∑
λ=even

gλAλBλ[(Ep + Es)Pλ(cos2)

−(Ep − Es)fλ(L)P (2)λ (cos2) cos 2α] (20)

where

fλ(L) = −(−1)3(π)
(
(λ− 2)!

(λ + 2)!

)1/2

(
L L λ

1 1 −2

)
(
L L λ

1 −1 0

) . (21)
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TakingEp (Es) = 1 (0) andEp (Es) = 0 (1), the emitted angular distribution along thep
ands axes of the detector, is given, respectively, by

Wp(s)(2, α) = d�

8π

∑
λ=even

gλAλBλ[Pλ(cos2)∓ fλ(L)P (2)λ (cos2) cos 2α], (22)

where the− (+) corresponds to thep (s) polarization component of the radiation. The
polarization factorP(2, α) can be defined as

P(2, α) = Ws(2, α)−Wp(2, α)

Ws(2, α) +Wp(2, α)

= cos 2α

∑
λ=evenfλ(L)P

(2)
λ (cos2)gλAλBλ∑

λ=evenPλ(cos2)gλAλBλ
. (23)

For a non-spiralling beam with2 = π/2 andα = 0, this agrees with the standard definition
of the polarization factor [1,2,7]. Equation (20) can now be expressed in terms ofP(2, α) as

W(2, α, Ep, Es) = d�

8π
[(Es + Ep) + (Es − Ep)P (2, α)]

∑
λ=even

Pλ(cos2)gλAλBλ. (24)

For a polarization insensitive detector,Ep = Es = 1, and

W(2) = d�

4π

∑
λ=even

gλAλBλPλ(cos2). (25)

The upper level in thei → f decay may sometimes be populated by cascades from a
higher-lying excited level. The effect of cascades on the polarization is calculated through the
use of the de-orientation factor as described by Steffen and Alder [20] and applied to atomic
transitions by Beiersdorferet al [15]. This factor is unaffected by electron spiralling.

3. Applications

The vast majority of EBIT measurements involve the detection of dipole radiation using photon
detectors placed so that2 = π/2 andα = 0. For this situation

P = ∓3g2A2B2

2− g2A2B2
. (26)

Here we have usedg0 = A0 = B0 = 1 andf2(1) = ∓ 1
2 where the top (bottom) sign

corresponds to E1 (M1) transitions. We defineP = P for situations where the pitch angle of
the electronsθ = 0, i.e.,f (cosθ) = δ(cosθ − 1). Thengλ = 1 and

P = ∓3A2B2

2− A2B2
. (27)

P can now be expressed in terms ofP as

P = P 3g2

3∓ (1− g2)P
. (28)

Solving equation (26) forA2B2, the angular factor can be expressed by

W(Ep, Es) = d�

8π
[(Es + Ep) + (Es − Ep)P ]

3

3∓ P . (29)

Although one seldom needs to go to higher multipoles, quadrupole transitions are
sometimes important. In this case, the polarization forf (cosθ) = δ(cosθ −1) alone does not
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determine the angular distribution completely. Introducingβ = A4B4/A2B2 and noting that
f2(2) = ± 1

2 andf4(2) = ∓ 1
12, we find

P = ±(12g2 + 5g4β)A2B2

8− (4g2 − 3g4β)A2B2
, (30)

where the top (bottom) sign corresponds to E2 (M2) transitions. The polarization for
f (cosθ) = δ(cosθ − 1) is

P = ±(12 + 5β)A2B2

8− (4− 3β)A2B2
. (31)

In terms ofP, we have

P = P 12g2 + 5g4β

12 + 5β ± [4(1− g2)− 3(1− g4)β]P
, (32)

and the angular factor becomes

W(Ep, Es) = d�

8π
[(Es + Ep) + (Es − Ep)P ]

12g2 + 5g4β

12g2 + 5g4β ± (4g2 − 3g4β)P
. (33)

In certain circumstances,B4 � B2 andβ is very small. An important example of this is the
M2 1s2p3P2–1s2 1S0 transition produced by the electron impact excitation of He-like systems,
for which,β . 10−3 [15]. For cases where one can neglect terms involvingβ, the polarization
and angular distribution of E2 (M2) transitions behave as M1 (E1) transitions.

The electron spiralling in an EBIT is commonly characterized by a typical transverse
energyE⊥, or a typical pitch angleθ0 with ε = sin2 θ0 = E⊥/E, whereE is the total beam
energy. In this case,f (cosθ) = δ(cosθ − cosθ0), and

g2 = 1− 3
2ε,

g4 = 1− 5ε + 35
8 ε

2.
(34)

Therefore equations (28) and (32) become

P = P 2− 3ε

2∓ εP , (35)

and

P = P 12 + 5β − (18 + 25β)ε + 175
8 ε

2β

12 + 5β ± (6ε − 15εβ + 105
8 ε

2β)P
. (36)

4. Conclusions

The polarization and anisotropy of radiation from atoms or ions due to collisions with an
axisymmetric electron beam of arbitrary velocity angular distribution can be characterized by
gλ, the expansion coefficients of the distribution function in terms of Legendre polynomials.
For dipole and quadrupole transitions, simple expressions are given explicitly relating the
polarization due to a spiralling beam to that due to a unidirectional one. Using these expressions
adjustments can be made to the expected line polarization caused by electron spiralling that
are more accurate than the previous estimates. For example, the depolarization caused by a
thermal electron energy of 110 eV was estimated by Beiersdorferet al [15] to reduce the
measured polarization of the resonance transition in helium-like Fe24+ by 0.7% at a beam
energy of 6.8 keV. Using our expressions we find a reduction of 1.1%. The depolarization
effect will be more pronounced at lower beam energies. In the case of helium-like Ne8+, the
reduction will be 16% assuming the same thermal electron energy and a 1 keVbeam energy.
Our expressions also allow an estimate of the uncertainty introduced if no such adjustments
are made, thus increasing the reliability of all atomic cross section measurements that depend
on accurate line intensity measurements.
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